Multiple roles for Enterococcus faecalis glycosyltransferases in biofilm-associated antibiotic resistance, cell envelope integrity, and conjugative transfer.

نویسندگان

  • Jennifer L Dale
  • Julian Cagnazzo
  • Chi Q Phan
  • Aaron M T Barnes
  • Gary M Dunny
چکیده

The emergence of multidrug-resistant bacteria and the limited availability of new antibiotics are of increasing clinical concern. A compounding factor is the ability of microorganisms to form biofilms (communities of cells encased in a protective extracellular matrix) that are intrinsically resistant to antibiotics. Enterococcus faecalis is an opportunistic pathogen that readily forms biofilms and also has the propensity to acquire resistance determinants via horizontal gene transfer. There is intense interest in the genetic basis for intrinsic and acquired antibiotic resistance in E. faecalis, since clinical isolates exhibiting resistance to multiple antibiotics are not uncommon. We performed a genetic screen using a library of transposon (Tn) mutants to identify E. faecalis biofilm-associated antibiotic resistance determinants. Five Tn mutants formed wild-type biofilms in the absence of antibiotics but produced decreased biofilm biomass in the presence of antibiotic concentrations that were subinhibitory to the parent strain. Genetic determinants responsible for biofilm-associated antibiotic resistance include components of the quorum-sensing system (fsrA, fsrC, and gelE) and two glycosyltransferase (GTF) genes (epaI and epaOX). We also found that the GTFs play additional roles in E. faecalis resistance to detergent and bile salts, maintenance of cell envelope integrity, determination of cell shape, polysaccharide composition, and conjugative transfer of the pheromone-inducible plasmid pCF10. The epaOX gene is located in a variable extended region of the enterococcal polysaccharide antigen (epa) locus. These data illustrate the importance of GTFs in E. faecalis adaptation to diverse growth conditions and suggest new targets for antimicrobial design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Enterococcus faecalis isolates originating from different sources for their virulence factors and genes, antibiotic resistance patterns, genotypes and biofilm production

In this study, 72 Enterococcus faecalis isolates originating from humans (n=39), dogs (n=26) and cats (n=7) were investigated for some virulence factors, some virulence genes, antibiotic resistance phenotypes, randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) patterns and biofilm production. Of the isolates, 31 (43.1%) were positive for gelatinase, 11 (15.3%) for aggregati...

متن کامل

Intra- and Interspecies Genomic Transfer of the Enterococcus faecalis Pathogenicity Island

Enterococci are the third leading cause of hospital associated infections and have gained increased importance due to their fast adaptation to the clinical environment by acquisition of antibiotic resistance and pathogenicity traits. Enterococcus faecalis harbours a pathogenicity island (PAI) of 153 kb containing several virulence factors including the enterococcal surface protein (esp). Until ...

متن کامل

Conjugative transfer of the virulence gene, esp, among isolates of Enterococcus faecium and Enterococcus faecalis.

OBJECTIVES The enterococcal surface protein gene, esp, is a major putative pathogenicity marker in clinical isolates of Enterococcus faecium and Enterococcus faecalis. This study demonstrates in vitro conjugative transfer of the esp gene among E. faecium and E. faecalis. MATERIALS AND METHODS Enterococcal isolates from clinical samples, positive for esp, were mated on filters with enterococca...

متن کامل

Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits.

The Enterococcus faecalis pathogenicity island (PAI) encodes known virulence traits and >100 additional genes with unknown roles in enterococcal biology. Phage-related integration and excision genes, and direct repeats flanking the island, suggest it moves as an integrative conjugative element (ICE). However, transfer was observed not to require these genes. Transfer only occurred from donors p...

متن کامل

VirB8-like protein TraH is crucial for DNA transfer in Enterococcus faecalis

Untreatable bacterial infections caused by a perpetual increase of antibiotic resistant strains represent a serious threat to human healthcare in the 21(st) century. Conjugative DNA transfer is the most important mechanism for antibiotic resistance and virulence gene dissemination among bacteria and is mediated by a protein complex, known as type IV secretion system (T4SS). The core of the T4SS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 59 7  شماره 

صفحات  -

تاریخ انتشار 2015